报告题目:Matrix representations for Dirac operators with finite spectrum
报告人:李昆副教授
邀请人:郑召文教授
报告时间:12月5日上午10:30—11:30
报告地点:白云校区一教602
报告摘要:In this talk, we construct a class of regular Dirac operator which has at most n=2m+1 eigenvalues. Moreover, we identify a class of Dirac equations such that for any Dirac operator problem composed of such an equation and an arbitrary separated or real coupled self-adjoint boundary condition, it can be represented as an equivalent finite dimensional matrix eigenvalue problem. Conversely, given any matrix eigenvalue problem of a specific type and an appropriate separated or real coupled self-adjoint boundary condition, we construct a class of Dirac operators with the specified boundary condition. Each of these Dirac operators is equivalent to the given matrix eigenvalue problem, where equivalence implies that they possess exactly the same eigenvalues.
报告人简介:李昆,曲阜师范大学副教授,硕士研究生导师,主要从事常微分算子谱理论的研究。主持国家自然科学基金青年基金、山东省自然科学基金面上项目、山东省自然科学基金青年项目、中国博士后科学基金面上项目以及优秀专著出版项目各一项。相关成果发表在Stud. Appl. Math, Bull. Sci. Math., P. EDINBURGH MATH. SOC, J. Math. Phys., 中国科学, 数学物理学报等国内外学术期刊上。