报告题目: Existence of limit cycles and homoclinic bifurcation in a plant-herbivore model with toxin-determined functional response
报告人:赵育林
报告时间: 2025年11月7日(星期五), 16:50-17:40
报告地点: 广东技术师范大学白云校区图书馆117室
内容摘要:In this paper we study a two-dimensional toxin-determined functional response model (TDFRM). The toxin-determined functional response explicitly takes into consideration the reduction in the consumption of plants by herbivore due to chemical defence, which generates more complex dynamics of the plant-herbivore interactions. The purpose of the present paper is to analyze the existence of limit cycles and bifurcations of the model. By applying the theories of rotated vector fields and the extended planar termination principle, we establish the conditions for the existence of limit cycles and homoclinic loop. It is shown that a limit cycle is generated in a supercritical Hopf bifurcation and terminated in a homoclinic bifurcation, as the parameters vary。
报告人简介: 赵育林,中山大学二级教授、博士生导师、数学学院(珠海)院长,广东省本科高校教学指导委员会数学专业委会委员,广东省数学会常务理事,2007入选教育部新世纪优秀人才支持计划。曾先后访问意大利佛罗伦萨大学、加拿大Universite des Montreal、York University,以色列Weizmann Institute of Science、巴西圣保罗大学、美国普渡大学、法国里尔大学、西班牙Universitat Autonoma de Barcelona等高校。主要从事常微分方程定性理论和分支理论的研究工作,包括弱化的Hilbert十六问题、周期单调性、代数极限环、高阶极限环分支问题等,已在J. Differential Equation、Nonlinearity、中国科学(英文版)等期刊上发表多篇学术论文,主持国家自然科学基金项目6项。
欢迎感兴趣的老师、同学参加。