报告题目: Non-monotone waves of a stage-structured SLIRM epidemic model with
latent period
报告人: 吴楚芬教授(佛山科学技术学院)
报告时间: 2021年4月22日(星期四), 11:30-12:30
报告地点: 腾讯会议, 会议号: 453 638 813
内容摘要: We propose and investigate a stage-structured SLIRM epidemic model with latent period in a spatially continuous habitat. We first show the existence of semi-traveling waves that connect the unstable disease-free equilibrium as the wave coordinate goes to $-\infty$, provided that the basic reproduction number $\mathcal {R}_0>1$ and $c>c_*$ for some positive number $c_*$. We then use a combination of asymptotic estimates, Laplace transform and Cauchy's integral theorem to show the persistence of semi-traveling waves. Based on the persistent property, we construct a Lyapunov functional to prove the convergence of the semi-traveling wave to an endemic (positive) equilibrium as the wave coordinate goes to $+\infty$. In addition, by the Laplace transform technique, the non-existence of bounded semi-traveling wave is also proved when $\mathcal {R}_0>1$ and $0<c<c_*$. This indicates that $c_*$ is indeed the minimum wave speed.Finallywe show the existence of critical waves for $\mathcal {R}_0>1$ and $c=c_*$ by limiting arguments.
报告人简介: 吴楚芬,教授,硕士生导师,佛山科学技术学院数学与大数据学院副院长,上海交通大学博士后,华南师范大学优秀校友,美国《数学评论》评论员,国家自然科学基金、广东省自然科学基金同行评议专家,中国仿真学会不确定性系统分析与仿真专业委员会委员,广东数学会理事,《Applicable Analysis》、《Nonlinear Analysis(RWA)》、《J. Math. Anal. Appl.》、《Chaos》、《Applied Mathematics Letters》等国际杂志的审稿专家,研究方向包括生物数学、非线性分析、应用动力系统等领域,目前已经在国际顶尖期刊《J. Diff. Eqns.》、《J. Dyna. Diff. Eqns.》、《Disc. Contin. Dyn. Sys.》、《Proceedings of the Royal Society of Edinburgh Section A: Mathematics》、《IMA J. Appl. Math.》等杂志上发表了近30篇学术论文;曾经主持国家自然科学基金项目3项,广东省自然科学基金项目2项。
欢迎感兴趣的老师和同学参加!