时间:2019年12月16日(周一)09:00-10:00
地点:工业中心506室
报告题目:Modelling and anslysis of non-Markovian intracellular reaction networks
报告人简介: 周天寿,男,教授,数学研究所所长,广东省计算数学重点实验室副主任,中国工业与应用数学学会数学生命科学专业委员会副主任,中国运筹学会计算系统生物学专业委员会副主任。研究方向:计算系统生物学。在SCI刊物发表150余篇论文,包括国际顶尖刊物PNAS和PRL,其中发表在PRL上的论文被Harvard大学生物系M. Springer和J. Paulsson教授在Nature上作了专门评论。在科学出版社出版学术专著2部。曾获全国优秀博士学位论文奖和国家自然科学二等奖。主持4项国家自然科学基金委重点项目。
内容摘要:Modeling and analysis of intracellular processes have long relied on the Markovian assumption. However, as soon as a reactant interacts with its environment, molecular memory definitely exists and its effects cannot be neglected. Since the Markov theory cannot translate directly to modeling and analysis of non-Markovian processes, this leads to many significant challenges. We develop a novel formulation, namely the stationary generalized chemical master equation, to model intracellular processes with molecular memory. This formulation converts a non-Markovian question to a Markovian one while keeping the stationary probabilistic behavior unchanged. Both a stationary generalized Fokker-Planck equation and a generalized linear noise approximation are further developed, each convenient for the fast evaluation of fluctuations. These formulations can have broad applications and may help us discovery new biological knowledge.
欢迎老师、同学们参加!
数学与系统科学学院
2019年12月13日