研究方向:动力系统和生物数学
办公邮箱:yitan@gpnu.edu.cn
个人简介:
谭懿,广东技术师范大学专任教师。主要研究兴趣包括微分方程和动力系统分支理论、数学生物学和流行病学。博士期间,系统研究了人兽共患病的传播机制与随机分岔动力学行为,对新发传染病的跨物种传播机制和风险评估提出创新性认识。同时,作为约克大学Centre for Diseases Modelling (CDM) 团队的成员,利用数学模型预测和评估加拿大新冠及猴痘疫情的防控策略的重大项目,相关研究成果被加拿大公共卫生部门采纳,为政策制定与决策优化提供科学支持。近五年在国际高水平期刊发表论文十余篇,累计引用280余次。
教育背景:本科和硕士分别毕业于西北大学和陕西师范大学,分别获理学学士学位和应用数学硕士学位;2025年毕业于加拿大约克大学,获数学与统计学博士学位,师从朱怀平教授。
主讲课程:高等数学
代表性论文:
1. Yuan P1, Tan Y1, Yang L1, Aruffo E1, Ogden N, Yang G, Lu H, Lin Z, Lin W, Ma W, Fan M, Wang K, Shen J, Chen T, Zhu H. Assessing the mechanism of citywide test-trace-isolate Zero-COVID policy and exit strategy of COVID-19 pandemic. Infectious Diseases of Poverty, 2022, 11(1): 104. (1代表共同第一作者,下同)
2. Aruffo E1, Yuan P1, Tan Y1, Gatov E, Moyles I, Bélair J, Watmough J, Collier S, Arino J, Zhu H. Mathematical modelling of vaccination rollout and NPIs lifting on COVID-19 transmission with VOC: a case study in Toronto, Canada. BMC Public Health, 2022, 22(1): 1349.
3. Yuan P1, Tan Y1, Yang L1, Aruffo E, Ogden N, Bélair J, Heffernan J, Arino J, Watmough J, Carabin H, Zhu H. Assessing transmission risks and control strategy for monkeypox as an emerging zoonosis in a metropolitan area. Journal of Medical Virology, 2023, 95(1): e28137.
4. Yuan P1, Aruffo E1, Tan Y1, Yang L, Ogden N, Fazil A, Zhu H. Projections of the transmission of the Omicron variant for Toronto, Ontario, and Canada using surveillance data following recent changes in testing policies. Infectious Disease Modelling, 2022, 7(2): 83-93.
5. Yuan P1, Tan Y1, Yang L1, Aruffo E1, Ogden N, Bélair J, Arino J, Heffernan J, Watmough J, Carabin H, Zhu H. Modeling vaccination and control strategies for outbreaks of monkeypox at gatherings. Frontiers in Public Health, 2022, 10: 1026489.
6. Tan Y1, Yuan P1, Moyles I, Heffernan J, Watmough J, Tang S, Zhu H. The stochasticity in adherence to nonpharmaceutical interventions and booster doses and the mitigation of COVID-19. Discrete and Continuous Dynamical Systems-S, 2023, 16(3&4): 602-626.
7. Tan Y, Ning L, Tang S, Cheke R. Optimal threshold density in a stochastic resource management model with pulse intervention. Natural Resource Modeling, 2019, 32(4): e12220.