研究方向:动力神经场理论与应用、具身碰撞感知
办公邮箱:ziyan96@gpnu.edu.cn
个人简介:
秦子雁,广东技术师范大学数学与系统科学学院教师。主要从事连续吸引子网络的理论与应用研究,首次将该理论研究拓展至视觉碰撞检测与机器人实时智能感知,已发表系列国际知名期刊与CCF推荐会议论文。
教育背景: 2018年毕业于中南民族大学,获学士学位;2021年毕业于广西大学, 获硕士研究生学位;2025年毕业于广州大学,获博士学位。
代表性论文:
1.Jin, D., Qin, Z., Yang, M., & Chen, P. (2021). A novel neural model with lateral interaction for learning tasks. Neural Computation, 33(2), 528-551.
2.Jin, D., Yang, M., Qin, Z., Peng, J., & Ying, S. (2021). A weighting method for feature dimension by semisupervised learning with entropy. IEEE Transactions on Neural Networks and Learning Systems, 34(3), 1218-1227.
3.Qin, Z., Peng, J., & Jin, D. (2022). A method for support neuron selection in NMLI. Neurocomputing, 489, 52-58.
4.Qin, Z., Fu, Q., & Peng, J. (2024). A computationally efficient and robust looming perception model based on dynamic neural field. Neural Networks, 179, 106502.
5.Qin, Z., Peng, J., Yue, S., & Fu, Q. (2025). A Bio-Inspired Research Paradigm of Collision Perception Neurons Enabling Neuro-Robotic Integration: The LGMD Case, Journal of The Royal Society Interface.